
www.manaraa.com

2006 Society for Design and Process Science
Printed in the United States of America

INTEGRATING THE CONCEPT OF SYNTHESIS IN THE
SOFTWARE ARCHITECTURE DESIGN PROCESS

Bedir Tekinerdogan
Mehmet Aksit
Department of Computer Science, University of Twente, The Netherlands

Synthesis is a widely applied problem-solving approach of mature engineering disciplines
including the sub-processes of technical problem analysis, identification and composition of
solution domain concepts, and alternative-space analysis. Current software development processes
do not adopt an explicit synthesis process and as such may fall short in identifying, composing and
evaluating the relevant concerns. In order to advance ad hoc software development process to a
mature engineering discipline it is necessary to integrate the concept of synthesis in current
software engineering processes. In software engineering, software architecture design forms a key
artifact including the early design decisions, which embodies the overall structure that impacts the
quality of the overall system. For ensuring the quality of software architecture, it is necessary to
identify and compose the relevant concerns. For this, we integrate the concept of synthesis in the
software architecture design process and present the synthesis-based software architecture design
process. This approach differs from existing software architecture design approaches since it
explicitly includes the synthesis sub-processes of technical problem analysis, solution domain
analysis and alternative space analysis, integrating these in a common process.

Keywords: synthesis, software architecture design.

1. Introduction
In order to grasp the essence of software engineering and understand its inherent problems, a critical

analysis from a broad perspective is required. To this aim, in this paper we consider software
engineering basically as a problem solving activity, whereby software solutions are produced for
technical problems. To explicitly reason about the concepts of problem solving, a model for problem
solving that may be used for analyzing various problem-solving activities is presented. This model is
used for analyzing problem solving in software engineering and comparing it with the more mature
engineering disciplines.

A basic concept that is derived from our analysis process that may be essential for software
engineering is the concept of synthesis. Synthesis is a well-known problem solving process that is
broadly and successfully applied in the traditional engineering disciplines. It includes explicit processes
for technical problem analysis, solution domain analysis and alternative space analysis. In the problem
analysis process, technical problems are identified and structured into loosely coupled sub-problems
that are first independently solved and later integrated in the overall solution. In the solution domain
analysis process, solution abstractions are extracted from the corresponding solution domains. In the
alternative space analysis process, different alternative solutions are searched and evaluated against
explicit quality criteria. The synthesis process is basically defined as interplay among the three sub-

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 45-56

www.manaraa.com

processes of technical problem analysis, solution domain analysis and alternative space analysis. In
mature engineering, it has been shown that it is effective in designing robust systems that adhere to the
corresponding quality attributes and constraints.

Unfortunately, in current software engineering practices the synthesis concept is not known and the
three processes are not fully integrated. In general, an explicit problem analysis process does not exist,
solution domain analysis is still not fully integrated in software design processes, and alternative
management is usually done in an implicit manner and is practically missing. Obviously, synthesis is a
useful concept in mature problem solving and it is worthwhile to integrate this in software engineering.

In software engineering, software architecture design (Aksit, 2001)(Tekinerdogan, 2000) forms a
key artifact including the early design decisions that embody the overall structure that impacts the
quality of the overall system. As such, it is expected that enhancing software architecture design
processes using synthesis will improve the quality of the software. Our previous studies have shown
that that the state-of-the-art architecture design approaches are not aligned with an explicit synthesis
process. Usually in software architecture design processes during the problem analysis, solution
domain analysis and alternative space analysis is either implicit or not well-defined. This causes a
number of problems such as the difficulty in finding stable abstractions, difficulty in leveraging the
architecture boundaries and poor semantics of the architectural components. We integrate the concept
of synthesis in the software architecture design process and present the synthesis-based software
architecture design process (Synbad). This approach differs from existing software architecture design
approaches since it explicitly includes the synthesis sub-processes of technical problem analysis,
solution domain analysis and alternative space analysis, integrating these in a common process.

The remainder of the paper is organized as follows. In section 2 we provide the problem solving for
engineering model (PSEM) (Tekinerdogan, 2000) which is the underlying model for the concept of
synthesis. In section 3 we show how the PSEM and the concept of synthesis are applied in mature
engineering disciplines. In section 4 we analyze software engineering from the problem solving
perspective and discuss the main differences with the synthesis process. In section 5 we apply the
concept of synthesis to software architecture design and present the synthesis-based architecture design
process. Finally section 6 concludes the paper.

2. Engineering as Problem-Solving
In essence, engineering is a problem solving activity and these two are directly interdependent. A

common model that represents engineering from a problem-solving standpoint will specifically show
the important features of engineering. In this context, we could come up with a very abstract model for
problem solving consisting essentially of two concepts: Need and Artifact. Given a particular need
(Problem), an artifact (Solution) must be provided that satisfies the need. Because of its very abstract
nature, all engineering disciplines, including software engineering, apply to this overly simple model.
Of course, the counterpart of the abstract nature of the model is that it is less useful in identifying the
differences between the existing engineering disciplines and for comparing these. Hence, we are
interested in a concrete problem-solving model that describes the separate important concepts needed
for understanding and expressing the concepts of engineering. To this aim, we propose the domain-
specific Problem Solving for Engineering Model (PSEM), which is illustrated in Figure 1. In the
subsequent sections, PSEM will serve as an objective basis for comparing engineering disciplines. The
service industry, whether it is in the area of travel, leisure, entertainment or finance, involves
personalized activities requiring interaction and intervention between humans and machines. The U.S.
Bureau of Labor Statistics estimates that more than two thirds of all workers in the U.S. are involved in
service functions at present and their numbers are increasing rapidly.

This domain-specific model has been developed after a thorough literature study on both problem
solving and mature disciplines. In addition to the afore-mentioned problem-solving literature, we have

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 46

www.manaraa.com

studied selected handbooks including chemical engineering handbook (Perry, 1984), mechanical
engineering handbook (Marks, 1987), electrical engineering handbook (Dorf, 1997) and civil
engineering handbook (Chen, 1998). Furthermore, we have studied several textbooks on the
corresponding engineering methodologies of mechanical engineering and civil engineering (Cross,
1989, Ertas and Jones, 1996, Smith, et al., 1983), electrical engineering (Dorf, 1997) and chemical
engineering (Biegler, et al., 1997).

The model consists of a set of concepts and functions, which are represented by means of rounded
rectangles and directed arrows, respectively. Concepts are the necessary fundamental abstractions and
the functions are the conceptual processes that describe the interactions between these concepts. The
model consists of three fundamental parts: Problem Solving, Control and Context. In the following, we
will explain these parts in more detail.

CONTEXT

PROBLEM SOLVING CONTROL

Problem
Description

Alternative(s)

Solution Domain
Knowledge

Solution
Description

(Mathematical)
Model

Need

Artifact

Analyze

Heuristics/
Optimization Techniques

Quality
Criteria

Initiate

EvaluateDetail

Input

Constraints

Generate

Search

Conceive

Refine

Implement
Select/Optimize

Provide Constrain

Fig. 1 Problem solving for engineering model (PSEM).

2.1. Problem Solving
The problem-solving part consists of five concepts: Need, Problem Description, Solution Domain

Knowledge, Alternative, Solution Description and Artefact.
 Need represents an unsatisfied situation existing in the context. The function Input represents the

cause of a need.
 Problem Description represents the description of the problem. The function Conceive is the

process of understanding what the need is and expressing it in terms of the concept Problem
Description.

 Solution Domain Knowledge represents the background information that is used to solve the
problem. The function Search represents the process of finding the relevant background
information that corresponds to the problem.

 Alternative represents the possible alternative solutions. The function Generate serves for the
generation of different alternatives from the solution domain knowledge. After alternatives have

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 47

www.manaraa.com

been generated, the problem description can be refined using the function Refine. The function
Detail is used to detail the description of a selected alternative.

 Solution Description represents a feasible solution for the given problem. The function Apply
requires two inputs, Problem Description and Solution Domain Knowledge. It uses the relevant
background information to provide a solution description that conforms to the problem description.

 Artefact represents the solution for the given need. The function Implement maps the solution
description to an artefact. The function Output represents the delivery and impact of the concept
Artefact to the context. The function Initiate represents the cause of a new need because of the
produced artefact.

2.2. Control
Problem solving in engineering starts with the need, while the goal is to arrive at an artifact by

applying a sequence of actions. Since this may be a complex process, the concepts and functions that
are applied are usually controlled. This is represented by the Control part in the model. A control
system consists of a controlled system and a controller (Foerster, 1979). The controller observes
variables from the controlled system, evaluates this against the criteria and constraints, produces the
difference, and performs some control actions to meet the criteria. In PSEM, the control part consists of
three concepts: Representation of Concern, Criteria, and Adapter.
 (Mathematical) Model represents a description of the concept Alternative. The function Analyse

represents the process of analyzing the alternative.
 (Quality) Criteria represent the relevant criteria that need to be met for the final artifact. The

function Evaluate assesses the alternative with respect to (Quality) Criteria and Constraints.
 Constraints represent the possible constraints either from the context or as described in Problem

Statement.
 Heuristics/Optimization Techniques represents the information for finding the necessary actions to

meet the criteria and constraints. The function Select/Optimize selects the right alternative or
optimizes a given alternative to meet the criteria and the constraints.

2.3. Context
Both the control and the problem-solving activities take place in a particular context, which is

represented by the outer rounded rectangle in Fig. 1 Context can be expressed as the environment in
which engineering takes place including a broad set of external constraints that influence the final
solution and the approach to the solution. Constraints are the rules, requirements, relations,
conventions, and principles that define the context of engineering Fig. 1, that is, anything, which limits
the final solution. Since constraints rule out alternative design solutions directing engineers into taking
action on what is doable and feasible.

The context also defines the need, which is illustrated in Fig. 1 by a directed arrow from the context
to the need concept. Apparently, the context may be very wide and include different aspects like the
engineer’s experience and profession, culture, history, and environment Fig. 1.

2.4. Scaleability of PSEM
Engineering problems are complex and include many and different kinds of concerns. A problem

may include various needs, require different kinds of solution domain knowledge, various goals,
different abstractions, etc. For large and complex problems, it is just practically impossible to cope
with all these concerns at a time and by the same engineers. This means that the problem cannot be
solved in one step. A traditional technique for coping with complexity is decomposition of the problem
into sub-problems. The engineering disciplines apply this technique and decompose the overall

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 48

www.manaraa.com

engineering process into so-called phases. A phase represents a set of related activities to solve a
particular problem. As such each phase can itself be modeled using the PSEM. The decomposition into
different phases may be modeled through the function Initiate. Each phase results in an intermediate
artifact description that is used to produce subsequent artifact descriptions. This process will be
continued until the final artifact, that is, the artifact directly used by the end-user, is produced. These
observations are shown in Fig. 2. In the figure instances of the PSEM are represented through rounded
rectangles with underlined names. Since each phase is a problem-solving process, it adopts the
concepts and functions as described by the engineering model in Fig. 2. The concepts and functions,
however, will have different and particular content.

Obviously, the decomposition of the overall process into several phases with a particular concern
facilitates the problem solving effort. However, executing the whole process sequentially, that is, phase
after phase, is generally complicated and therefore iteration between different phases is proposed in
engineering disciplines. In Fig. 2, iteration is represented by feedback arrows between the different
phases.

aPhase1:
PSEM

a1: Artifact

aPhase2:
PSEM

a2: Artifact

aPhaseN:
PSEM

an: Artifact

followed by

followed by

iterate

iterate

Fig. 2 The decomposition of the overall problem solving process into phases.

2.5. Notion of Synthesis
The PSEM model is a general model for representing problem-solving processes in engineering.

The model can be applied to implement various problem solving processes. It appears that the model
has the following three processes:
 Technical Problem Analysis, includes the definition of the problems and the sub-problems that

need to be solved.

 Solution Domain Analysis, includes the search for the solution domain and its modeling in order
to solve the problems.

 Alternative Space Analysis, includes the alternative space generation and alternatives evaluation
of the composed solutions.

In traditional engineering, the interplay between these three processes is often termed synthesis
(Maher, 1989). Synthesis in engineering often means a process in which a problem specification is
transformed to a solution by first decomposing the problem into loosely coupled sub-problems that are

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 49

www.manaraa.com

independently solved and integrated into an overall solution. Synthesis consists generally of multiple
steps or cycles. A synthesis cycle corresponds to a transition (transformation) from one synthesis state
to another and can be formally defined as a tuple, consisting of a problem specification state and a
design state (Maimon, et al., 1996). The problem specification state defines the set of problems that
still needs to be solved. The design state represents the tentative design solution that has been lastly
synthesized. Initially, the design state is empty and the problem specification state includes the initial
requirements. After each synthesis state transformation, a sub-problem is solved. In addition a new
sub-problem may be added to the problem specification state. Each transformation process involves an
evaluation step whereby it is evaluated whether the design solutions so far (design state) are consistent
with the initial requirements and if there are any additional requirements identified during the
synthesis. In particular, the synthesis process includes an explicit phase for searching design
alternatives in the corresponding solution domain and selecting these alternatives based on explicit
quality criteria.

3. Synthesis Process in Mature Engineering
In the following we will describe synthesis and its three processes of technical problem analysis,

solution domain analysis and alternative space analysis in mature engineering disciplines.

3.1. Technical Problem Analysis
Although initial client problems are ill-defined (Rittel, et al, 1984) and may include many vague

requirements, the mature engineering disciplines focus on a precise formulation of the objectives and a
quantification of the quality criteria and the constraints, resulting in a more well-defined problem
statement. The objectives are often ordered into higher and lower-level objectives. The criteria and
constraints are often expressed in mathematical formulas and equations. The quality concept is thus
explicit in the problem description and refers to the variables and units defined by the International
Systems of units (SI). Some of these variables are used by more than one engineering discipline; other
variables are more specific to a particular engineering discipline. What matters, though, is that problem
descriptions include quantified criteria and constraints and that quality is made explicit in this way.
From the given specification, the engineers can easily calculate the feasibility of the end-product for
which different alternatives are defined and, for example, their economical cost may be calculated.

3.2. Solution Domain Analysis
As a matter of fact mature engineering disciplines are based on a rich scientific knowledge that has

developed over several centuries. The corresponding knowledge has been compiled in several
handbooks and manuals that describe numerous formulas that can be applied to solve engineering
problems. The handbooks we studied contain more than 2000 pages each and provide a comprehensive,
in-depth coverage of the various aspects of the corresponding engineering field from contributions of
dozens of top experts in the field. Using the handbook, the engineer is guided by hundreds of valuable
tables, charts, illustrations, formulas, equations, definitions, and appendices, containing extensive
conversion tables and usually sections covering mathematics. The handbooks not only describe
properties of primitive elements such as material and energy but in addition describe well-known
systems at a more gross level such as machines and mechanisms in mechanical engineering, control
systems in electrical engineering, bridge design in civil engineering, and process design in chemical
engineering. Together with engineering manuals they cover a wide range of scientific, mathematical
and technological knowledge. Obviously, scientific knowledge plays an important role in the degree of
maturity of the corresponding engineering.

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 50

www.manaraa.com

3.3. Alternative Space Analysis
In mature engineering, alternatives are usually extracted from the related literature or composed

from existing components for which extensive analyses are given in the related literature. In case no
accurate formal expressions or off-the-shelf solutions can be found, heuristic rules are used (Coyne,
1990, Cross, 1989, Maher, 1989). Alternatives are evaluated by using mathematical modeling. A
mathematical model is an abstract description of the artifact using mathematical expressions of relevant
natural laws. One mathematical model may represent many alternatives. In addition different
mathematical models may be needed to represent various aspects of the same alternative. It appears
that mathematical models are widely used in mature engineering disciplines. The handbooks we
studied each contain several chapters on mathematical theories predominantly on optimization. The
selected alternatives are analyzed and evaluated using mathematical techniques such as differential
calculus, linear programming, non-linear programming and dynamic programming.

4. Contemporary Perspective of Problem Solving in Software Engineering
We will now analyze software engineering using the PSEM model and the corresponding synthesis

process.

4.1. Technical problem analysis
In software engineering, the phase for conceiving the needs is referred to as requirements analysis

which usually is started through an initial requirement specification of the client. In mature engineering
we have seen that the quality concept is already explicit in the problem description through the
quantified objectives of the client. In software engineering this is quite different. Very often a
distinction is made between functional requirements and non-functional requirements. As described in
(Jacobson, 2000) functional requirements express the actions that a system must perform without
considering the constraints. Non-functional requirements impose constraints on functional
requirements and specify the required system properties, such as environmental, implementation and
performance constraints and the expected quality criteria like maintainability and reliability. In contrast
to mature engineering disciplines, however, constraints and the requirements are usually not expressed
in quantified terms. Rather the quality concern is mostly implicit in the problem statement and includes
terms such as ‘the system must be adaptable’ or 'system must perform well' without having any means
to specify the required degree of adaptability and/or the performance.

It should be noted that the importance of requirements engineering has seriously changed over the
last decade. There is an IEEE conference on RE, which has been running successfully since 1993, a
Requirements Engineering journal, several serious textbooks on requirements engineering, and a lot of
research, which deals with both formalizing and measuring functional and non-functional
requirements. Although the community seems on the right track it is generally acknowledged that the
aimed state of mature engineering is unfortunately not reached yet.

4.2. Solution Domain Analysis
It turns out that a common implicit assumption of the current approaches in software development is

that the concept Problem Description, or requirement specifications, forms the basic input for the
development of software solutions and scientific knowledge has only a minor role. The general idea is
that requirements have to be specified using some representation and this should be refined along the
software development process until the final software is delivered. Software development is thus seen
as an evolutionary transformation process of the initial requirements until final software
implementation. This approach resembles the early pre-mature phases of traditional engineering
disciplines when scientific knowledge was not mature yet or not applied in practice. The lack of the
explicit notion of solution domain could be related to the relatively young history of the field of

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 51

www.manaraa.com

software engineering. In fact software engineering is only about 40 years old and obviously has not yet
experienced the full maturation of the scientific and technological knowledge as in the traditional
engineering disciplines. If we relate the quantity of knowledge to the supporting knowledge of mature
engineering disciplines, the available knowledge in software engineering which is currently organized
and actually used is quite meager. In that sense, the available handbooks of software engineering are
not comparable to the standard handbooks of mature engineering disciplines. Moreover, on many
fundamental concepts in software engineering, consensus among experts has still not been reached yet
and research is ongoing. Similar to the developments in requirements engineering (and problem
analysis), however, we can also observe progress in the solution domain analysis. Recently, domain
analysis is introduced as the process of identifying, capturing and organizing domain knowledge about
the problem domain with the purpose of making it reusable when creating new systems (Arrango,
1994). An increasing number of software design methods are now based on domain-driven design.
Nevertheless, as in the case of requirements engineering it is still too early to state that software
engineering applies solution domain analysis as in the synthesis process of mature engineering
disciplines.

4.3. Alternative Space Analysis
The selection and evaluation of design alternatives in mature engineering disciplines is based on

quantitative analysis through optimization theory of mathematics. Apparently, this is not common
practice in software engineering. In general software methods do not easily apply mathematical
optimization techniques to generate and evaluate alternative solutions. Moreover, the notion of quality
in software engineering has still an informal basis. There is however a broad agreement that quality
should be taken into account when deriving solutions. In software engineering quality factors are often
divided into external and internal qualities that correspond to the distinction between internal and
external attributes of entities. The external qualities are visible to the end-users of the system. The
internal qualities concern the developers of the software system. Internal qualities deal largely with the
structure of the system and help to achieve the external qualities. Quality factors may be attributed to
the process, the product and the available resources. Some important software quality factors such as
correctness, robustness, reliability, adaptability, reusability and extensibility are better defined (Ghezzi,
et al., 1991, Humphrey, 1989). However, in general, these quality factors are not quantified and as such
cannot be explicitly used to generate, evaluate and optimize design alternatives.

5. Synthesis-Based Architecture Design
Obviously, despite its benefit for engineering, the concept of synthesis has not yet been fully

implemented in software engineering processes (Tekinerdogan, et al, 2001). In this section we describe
the synthesis-based software architecture design process (Synbad) that is an implementation of the
PSEM model and as such an application of the concept of synthesis in software engineering. Synbad
consists of five basic processes, which are respectively Requirements Analysis, Technical Problem
Analysis, Solution Domain Analysis, Alternative Design Space Analysis and Architecture Specification.
The process is illustrated in Fig. 3. The figure uses the graphical notation from Hierarchical Task
Analysis (HTA) (Diaper, 1989) in which activities are represented in hierarchical order. Each
numbered box represents an activity that can be refined using a plan. Each plan represents a flow
diagram describing the causal sequencing of the activities. The double-headed arrows represent
interaction between two activities. The diamond with a question mark represents the validation of a
step. In the following Synbad is explained in more detail.

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 52

www.manaraa.com

Plan 0: 1→2→3→4→5

Synthesis-Based
Software Architecture
Design

0

Define
Conceptual
Structure

4

Specify
Informal
Requirements

1

Plan 1: 1→2→3

Generalize
Requirements

Identify
Sub-Problems

Prioritize
Sub-Problems

1 2 3 4
Specify
Sub-Problems

3

Define
Alternatives
for each
Concept

Describe
Constraints

2

Plan 4: 1→ 2

Define
Semantics of
Architecture

Plan 5: 1→2

1 Define
Dynamic
Behavior

2

Extract
Solution Domain
Concepts

3Identify and
Prioritize
Knowledge
Sources

2Identify and
Prioritize
Solution Domains

1

Plan 3: 1→ 2→ 3→ 4

Plan 2: 1→2→3→4

?

Define
formals
models

4
Building
Prototype

3Use-Case
and Scenario
Analysis

2

Requirements
Analysis

1 Technical
Problem
Analysis

2 Alternative
Design Space
Analysis

4
Architecture
Specification

5Solution
Domain
Analysis

3

Fig. 3. Synthesis-based software architecture design.

5.1. Requirements Analysis
The first basic process of the synthesis process is the requirements analysis in which the basic goal

is to understand the requirements from a client's perspective. For this purpose, Synbad adopts the well-
known requirement analysis techniques such as informal requirement specifications, use-cases and
scenarios, constructing prototypes and defining finite state machines. We will not elaborate on these
techniques here and suffice to refer to existing software engineering textbooks (Sommerville, 2003).

5.2. Technical Problem Analysis
During the technical problem analysis process the client requirements are mapped to technical

problems. Hereby, the requirements are abstracted and represented in a general form. From these
abstracted requirements the technical problems are identified and specified. If necessary, the problem is
decomposed into sub-problems, whereby these are prioritized to their relevance.

5.3. Solution Domain Analysis
The Solution Domain Analysis process aims to provide a solution domain model that will be

utilized to extract the fundamental concepts of a problem. Hereby, for each problem the corresponding
solution domains are identified. Subsequently, for each solution domain, knowledge sources are
identified and prioritized with respect to their relevance and objectivity. From these knowledge

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 53

www.manaraa.com

sources, the solution domain concerns are identified and structured by looking at commonalities and
variations of the extracted abstractions. The relation between these concepts is shown in Fig. 4.

Solution
Domain

Knowledge
Source

Technical
Problem

includes

Solution Domain
ConceptSub-Problem

includes

solution
provided by derive

solution
provided by

solves

solves*

1..*

1..*1..*

1..*

Fig. 4 The relation between technical problem, solution domain, knowledge source and solution

domain concept.

5.4. Alternative Design Space Analysis
We define the alternative space as the set of possible design solutions that can be derived from a

given conceptual software architecture. The Alternative Design Space Analysis aims to depict this
space and consists of the sub-processes Defining the Alternatives for each Concept and Describing the
Constraints. The architecture design alternatives are largely dealt with by deriving architectural
abstractions from well-established concepts in the solution domain. Each architectural concept is an
abstraction from a set of instantiations and during the analysis and design phases the architecture is
realized by selecting particular instances of the architectural concepts. An instance of a concept is
considered as an alternative of that concept. The total set of alternatives per concept may be too large
and/or not relevant for solving the identified problems. Therefore, to define the boundaries of the
architecture it is necessary to identify the relevant alternatives and omit the irrelevant ones. A reduction
in the space is defined by the solution domain itself that defines the constraints and as such the possible
combination of alternatives. The possible alternative space can be further reduced by considering only
the combinations of the instantiations that are relevant from the client's perspective and the problem
perspective. Constraints may be defined for the sub-concepts within a concept as well as among higher-
level concepts. We first describe the constraints among the sub-concepts within a concept and later
among the concepts.

5.5. Specification of Design
During the specification process the semantics of the concerns are extracted from the solution

domain and the interactions and the additional dynamic behavior of the concerns are described. We
consider each concept separately to derive its semantics from the solution domains to provide a more
formal specification. The specifications of the architectural components are used to model the dynamic
behavior of the architecture.

6. Conclusions
We have provided a problem solving model for engineering and discussed the concept of synthesis

that is an implementation of this model. Our study has shown that synthesis is basically implemented in
design processes of mature engineering but is still lacking in software engineering as an explicit
concept. Obviously, synthesis plays a fundamental role in mature problem solving and for improving
the maturity of software engineering it is necessary to integrate this concept synthesis within the

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 54

www.manaraa.com

current software engineering practices. In this paper we have focused on software architecture design
which is one of the key processes for defining quality software. The application of synthesis to
architecture design process resulted in a novel approach that we termed synthesis-based software
architecture design approach (Synbad). This approach includes the explicit synthesis processes of
technical problem analysis, solution domain analysis and alternative space analysis that are important
for finding the stable architectural abstractions. During the technical problems analysis the initial
requirement specifications are mapped to relevant technical problems. In the solution domain analysis,
for each technical problem the necessary solution domains are identified and solution domain concepts
are extracted by identifying commonalties and variabilities of the extracted knowledge from the
solution domain. The solution domain concepts are mapped to the components of the conceptual
architecture. In the alternative space analysis process, for each solution domain concept the set of
possible alternative instances are depicted and the constraints among these are defined.

Unfortunately, due to space limitations we could not describe the Synbad process in detail. Detailed
knowledge on Synbad and its application can be found in our earlier publications (Aksit, 2001, Aksit,
et al., 1999, Tekinerdogan, 2000). We have successfully adopted the approach in several projects
(Ahsmann, 1995, Aksit, et al., 1999) during the last decade, such as the design of an atomic transaction
system architecture for a distributed car dealer information system, design of an insurance system, and
the analysis and design of a digital TV architecture (Trader, 2005). Our future work will elaborate on
the specialization of the specific sub-processes of the synthesis process.

7. Acknowledgements
This research has been financed by the Dutch National Organization for Science (NWO).

8. References
Ahsmann, F. and Bergmans, L., 1995, “I-NEDIS: New European Dealer System, Project plan I-NEDIS,”

Siemens-Nixdorf & University of Twente.
Aksit, M. (Ed.), 2001, “Software Architectures and Component Technology,” Kluwer.
Akşit, M., Tekinerdoğan, B., Marcelloni, F. and Bergmans, L. 1999, “Deriving Object-Oriented Frameworks

from Domain Knowledge,” in: M. Fayad, D. Schmidt, R. Johnson (Eds.), John Wiley & Sons, Building
Application Frameworks: Object-Oriented Foundations of Framework Design, pp. 169-198”

Arrango, G, 1994, “Domain Analysis Methods. In Software Reusability,” in: R. Schäfer, R. Prieto-Díaz and
M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49.

Bass, L., Clements, P., and Kazman, R., 1998, “Software Architecture in Practice,” Addison-Wesley.
Arrango, R., 1994, “Domain Analysis Methods”. in: R. Schafer, R. Prieto-Diaz and M. Matsumoto (Eds.),

Software Engineering Reusability, Ellis Horwood, New York.
Biegler, L.T., Grossmann, I.E., and Westerberg, A.W., 1997, “Systematic Methods of Chemical Process

Design,” Prentice Hall.
Braha, D., and Maimon, O., 1997. “The Design Process: Properties, Paradigms, and Structure”. IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 27, No. 2.
Chen, W.F., 1998, “The Civil Engineering Handbook,” CRC Press.
Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S., 1990, “Knowledge-based

Design Systems,” Addison-Wesley.
Cross, N., 1989, “Engineering Design Methods,” Wiley & Sons.
Diaper, D., (ed.) 1989, “Knowledge Elicitation,” Ellis Horwood, Chichester.
Dorf, R.C., 1997, “The Electrical Engineering Handbook,” Springer Verlag, New York.
Dunsheath, P., 1962, “A History of Electrical Engineering,” Faber & Faber, London.
Ertas, A., and Jones, J.C., 1996, “The Engineering Design Process,” Wiley & sons.

Transactions of the SDPS MARCH 2006, Vol. 10, No. 1, pp. 55

http://trese.cs.utwente.nl/Synthesis/Publications/Deriving OO Frameworks from Domain Knowledge-Wiley.pdf
http://trese.cs.utwente.nl/Synthesis/Publications/Deriving OO Frameworks from Domain Knowledge-Wiley.pdf

www.manaraa.com

Evans, E., 2004, “Domain-Driven Design: Tackling Complexity in the Heart of Software,” Addison-Wesley.
Fenton, N.E., and Phleeger, S.L., 1997, “Software Metrics: A Rigorous & Practical Approach”. PWS

Publishing Company.
Foerster, H. von., 1979, “Cybernetics of Cybernetics,” in: K. Krippendorff (ed.), Communication and Control

in Society, New York: Gordon and Breach.
Ghezzi, C., Jazayeri, M., and Mandrioli, D., 1991, “Fundamentals of Software Engineering”. Prentice-Hall.
Humphrey, W.S., 1989, “Managing the Software Process,” Addison-Wesley, Oxford.
Jacobson, I, Booch, G., and Rumbaugh, J., 2000, “The Unified Software Development Process,” Addison-

Wesley.
Marks, L.S., 1987, “Mark’s Standard Handbook for Mechanical Engineers,” McGraw-Hill.
Maher, M.L, 1989, “Synthesis and Evaluation of Preliminary Designs,” in: J.S. Gero (ed), Artificial

Intelligence in Design, New York: Springer-Verlag.
Maimon, O and Braha, D., 1996, “On the Complexity of the Design Synthesis Problem,” IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 26, No. 1.
Newell, N., and Simon, H.A., 1976, “Human Problem Solving,” Prentice-Hall, Englewood Clifss, NJ.
Perry, R., 1984, “Perry’s Chemical Engineer’s Handbook,” McGraw-Hill, New York.
Rittel, H.W., and Webber, M.M., 1984, “Planning problems are wicked problems,” Policy Sciences, 4, 155-

169.
Smith, G.F. and Browne, G.J., 1993, “Conceptual Foundations of Design Problem Solving”. IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 5.
Smith, A.A., Hinton, E., and Lewis, R.W., 1983, Civil Engineering Systems Analysis and Design, Wiley &

Sons.
Sommerville, I., 2000, “Software Engineering”. Addison-Wesley.
Tekinerdogan, B., 2000, “Synthesis-Based Software Architecture Design,” PhD Thesis, Dept. of Computer

Science, University of Twente.
Tekinerdoğan, B., and Akşit, M., 2001, “Classifying and Evaluating Architecture Design Methods, in

Software Architectures and Component Technology: The State of the Art in Research and Practice, M. Akşit
(Ed.), Boston:Kluwer Academic Publishers, pp. 3 - 27.

Trader, 2005, “Television Related Architecture Design for Enhancing Reliability (Trader) project,”
http://www.esi.nl/site/projects/trader

Upton, N., 1975, “An illustrated history of civil engineering,” Heinemann, London.

Journal of Integrated Design and Process Science MARCH 2006, Vol. 10, No. 1, pp. 56

http://trese.cs.utwente.nl/Synthesis/Publications/Tekinerdogan-Phd Thesis.pdf
http://trese.cs.utwente.nl/Synthesis/Publications/ch1_architecture_design_methods.pdf

www.manaraa.com

